GSC Lunchtime Sessions
CITEL
WRC-19 Agenda Items:
1.5, 1.13, 10

www.gscoalition.org
Optimizing the Use of Existing Satellite Spectrum to meet growing demand for new satellite services
Establish provisions for aeronautical, maritime, land ESIM operations within GSO FSS networks at 17.7-19.7 GHz & 27.5-29.5 GHz, with technical & regulatory protection mechanisms for the FSS, FS, MSS & EESS operations.
Market demand for satellite mobility applications is booming!

Aeronautical Market:
- 100+ commercial airlines offer IFC = a $40B opportunity for airlines by 2035
- 8200+ commercial aircraft connected
- Connecting passengers. Reducing fuel consumption & delays. Improving route planning

Maritime Market:
- 20000 VSAT enabled vessels (75000 by 2028)
- Drivers: crew & passenger connectivity, more sensors/applications for operational vessel monitoring, route planning & vessel tracking, autonomous vessels
AI 1.5 ESIMs in the FSS Ka-band

Proposals from regional groups: CITEL (doc 11); RCC (doc 12); CEPT (doc 16); APT (doc 24); ATU (doc 46); ASMG (doc 29) + various multi-country and individual country proposals

Common elements:

⇒ General support for new Resolution to address ESIM in 17.7-19.7 GHz & 27.5-29.5 GHz
⇒ Operation of ESIM within envelope of GSO FSS network characteristics & verification of compliance with envelope by BR (based on CR/C or notified network data)
⇒ 70km off-shore distance for maritime ESIM in which prior agreement from coastal state is needed to operate
⇒ Sharing between GSO ESIMs & non-GSO FSS or non-GSO MSS feeder links to be based on existing coordination procedures

Some elements still need to be resolved
AI 1.5 - ESIMs
Elements to be resolved, 1

1/ Technical requirements for A-ESIM (pfd limit values, possible altitude limit)

- GSC supports “Option 1” pfd limits (based on results of sharing studies with terrestrial services, including 5G)
- Altitude limit is not necessary, provided Option 1 pfd limits are adopted & notifying administrations provide a commitment of compliance.
- GSC has major concerns with feasibility for BR to run compliance check with pfd limit. Compliance should be a condition of ESIM authorization.

2/ Reference bandwidth for ESIM EIRP limits (1 MHz reference bandwidth or 14 MHz reference bandwidth)

- GSC supports 14 MHz reference bandwidth: smallest bandwidth for terrestrial service receivers. Hence the EIRP limit towards the horizon for M-ESIM is 24.44 dB(W/14 MHz). A-ESIM pfd limit should be expressed in 14 MHz reference bandwidth to avoid unnecessarily restrictive limits on A-ESIM operation.
3/ Conditions for sharing with non-GSO FSS and non-GSO MSS feeder links

- GSC supports inclusion ESIM power limits only in 27.5-28.6 GHz, coordination under 9.11A in 28.6-29.5 GHz

4/ Annex 3 guidelines (possible inclusion of guidelines to the Resolution)

- Annex 3 is unnecessary: ideas already clearly defined in main body of Resolution.

5/ Status of the protection limits for terrestrial services (Annex 2 of the Resolution)

- Maritime & aeronautical ESIMs meet pfd limits/minimum off-shore distance, to avoid unacceptable interference to the terrestrial services operating in accordance with the Radio Regulations within line-of-sight and on a co-frequency basis
- Compliance with these limits should be a necessary and sufficient condition for ESIM to meet its requirements with respect to terrestrial services
GSC Position
Agenda Item 1.13 - IMT

ISSUE
Identification of frequency bands, among candidate bands listed in Resolution 238, for future development of IMT
… while preserving access to satellite spectrum for existing & future users
Less than 50% of licensed spectrum is actually being used by IMT today

Source: “Worldwide Licensing and Use of IMT Spectrum”
LS telcom
Additional spectrum for IMT

![Table of Frequency Bands and Corresponding CPM Reports](image)

- **24.25-27.5 GHz**
 - Band(s) CPM Report: A
- **31.8-33.4 GHz**
 - Band(s) CPM Report: B
- **37-40.5 GHz**
 - Band(s) CPM Report: C
- **40.5-43.5 GHz**
 - Band(s) CPM Report: D & E
- **45.5-47.2 GHz**
 - Band(s) CPM Report: F & G
- **47.2-50.2 GHz & 50.4-52.6 GHz**
 - Band(s) CPM Report: H & I
- **66-71 GHz**
 - Band(s) CPM Report: J
- **71-76 GHz & 81-86 GHz**
 - Band(s) CPM Report: K & L

Total: 33.25 GHz

GSC Principles

- Consider ONLY bands of Res. 238 (WRC-15)
- Harmonisation of spectrum is key
- IMT identification with reasonable sharing conditions between IMT & satellite services

- A huge amount of spectrum has been studied
- More than enough to find ‘more spectrum’ for IMT
- New identifications should only be made against certain key principles
The GSC recommends IMT identifications at WRC-19 stay within:

- **26 GHz**: 24.25-27.5 GHz globally (3.25 GHz)
- **40 GHz**: 37-40 GHz in Region 2 and 40.5-43.5 GHz in Regions 1 and 3 (3 GHz)
- **66 GHz**: 66-71 GHz globally (5 GHz)

⇒ with reasonable sharing conditions & measures to ensure co-existence between IMT & satellite services:

- Power / pointing conditions on IMT base stations to protect FSS receivers, with no undue constraints on IMT
- Assistance to administrations in defining measures for future FSS earth station deployment

11.25 GHz above 24 GHz for IMT in each ITU-R Region
IMT argues that multiple bands should be harmonized to benefit from the ‘tuning range’ argument

According to the “European Union’s 5G Observatory” Latest Report:

Qualcomm’s first complete 5G solution only supports the 26 GHz mm-wave band - “that will be used in Europe notably.” Not 28 GHz!

Samsung’s Galaxy S10 5G only supports 28 & 39 GHz band “on the Verizon network” (US) Not 26 GHz!

According to iDate:
“the time has not yet come for worldwide 5G devices supporting all the 5G frequency bands.”

The “Tuning Range” Argument is a fallacy
Devices do not exist that can work across 26 & 28 GHz
AI 1.13: Additional spectrum for IMT

<table>
<thead>
<tr>
<th>Region</th>
<th>37-39.5 GHz</th>
<th>39.5-40 GHz</th>
<th>40-40.5 GHz</th>
<th>40.5-42 GHz</th>
<th>42-43.5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>HDFSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 2</td>
<td></td>
<td>HDFSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 3</td>
<td></td>
<td></td>
<td>HDFSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Region Table

<table>
<thead>
<tr>
<th>Region</th>
<th>37-39.5 GHz</th>
<th>39.5-40 GHz</th>
<th>40-40.5 GHz</th>
<th>40.5-42 GHz</th>
<th>42-43.5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>No Change</td>
<td></td>
<td></td>
<td>IMT</td>
<td></td>
</tr>
<tr>
<td>Region 2</td>
<td>IMT</td>
<td></td>
<td></td>
<td>No Change</td>
<td></td>
</tr>
<tr>
<td>Region 3</td>
<td>No Change</td>
<td></td>
<td></td>
<td>IMT</td>
<td></td>
</tr>
</tbody>
</table>

- Bands should not be identified for IMT in a Region where it is not intended for use by IMT.
- Global economies of scale for IMT equipment can be achieved through identification of 3 GHz of spectrum for IMT in each ITU Region.
- There is no need for a global 6 GHz wide band for IMT.
- Handsets used today are can already support multiple frequency bands AND can accommodate regional band differences.
GSC Position
Agenda Item 10
(C-Band)

Crucial Issue

◆ Can IMT replace the services that will be displaced?
◆ Do alternatives exist to provide these services?
C-band usage varies around the world

Every region has unique needs ⇒ One size does not fit all
C-band satellite applications

Video Distribution
C-band is used to deliver high quality content via cable and other distribution networks to hundreds of millions of viewers and directly to tens of millions.

Mobile Networks
C-band offers reliable backhaul for mobile networks in remote areas and provides capacity for large regions. In Indonesia between 6 and 15 million mobile subscribers are served via C-band, representing a total market value of up to $558 million.

Oil & Gas, Mining and Resources
C-band supports mission-critical operations in remote areas.

Banking
C-band is crucial where service level agreements set high reliability requirements. 75,000 antennas use C-band to dispense $400 million per day from Indonesian ATMs alone.

Air Navigation, Flight Tracking, Meteorology
C-band is used for networks which require wide coverage and very high reliability.

Maritime
Global C-band coverage is crucial for vessels operating in remote regions or on long routes and for Safety of Life at Sea services. C-band is also of increasing importance for large vessels.

Telemedicine
C-band supports the remote delivery of healthcare services, reaching otherwise underserved rural populations. 150,000 people a year are treated with the support of C-band in India alone.

E-government
C-band solutions facilitate efficient delivery of services to underserved and unserved areas across Asia Pacific.

Humanitarian Programmes
C-band offers connectivity for field offices, programme deployment and disaster management in remote areas.
Co-existence between FSS and 5G in adjacent bands must be carefully managed

- Satellite earth stations are very sensitive to terrestrial interference
- 5G signals can interfere with FSS receive earth stations in two ways:
 - Saturate the LNB of the earth station, even if the 5G signal is adjacent to the satellite signal
 - Out-of-Band-Emissions (OOBE) and Spurious Emissions (SE) of the 5G signal can cause in-band interference to FSS signals
- OOBE levels specified in 3GPP standards do not protect FSS signals in adjacent bands
GSC Position
Agenda Item 10
(3.3 GHz - 24 GHz)

Issue

◆ Can IMT replace the services that will be displaced?
◆ 33 GHz has just been studied, should even more spectrum for IMT really be studied?
The GSC is of the view that there is no need for any additional spectrum to be identified for IMT:

- **WRC-19**, under AI 1.13, is expected to identify many GHz of new spectrum for IMT.
- **Significant** amount of unlicensed or unused spectrum is already identified for IMT –
 ⇒ Around the world, less than 50% of available spectrum is licensed.
- **3.3 - 24 GHz range covers core bands for the satellite industry**: C-, X, Ku- and Ka-band
 ⇒ Many satellites operate in these bands => heavily used for applications e.g. broadcasting DTH, VSAT, SNG, broadband, security, etc.

Any identification of IMT in the 3.3-15.35 GHz range will:
- Interfere with existing satellite services
- Negatively impact existing investments
- Harm competition by limiting the ability of satellite operators to meet the growing demands of satellite users, including government
Thank you!