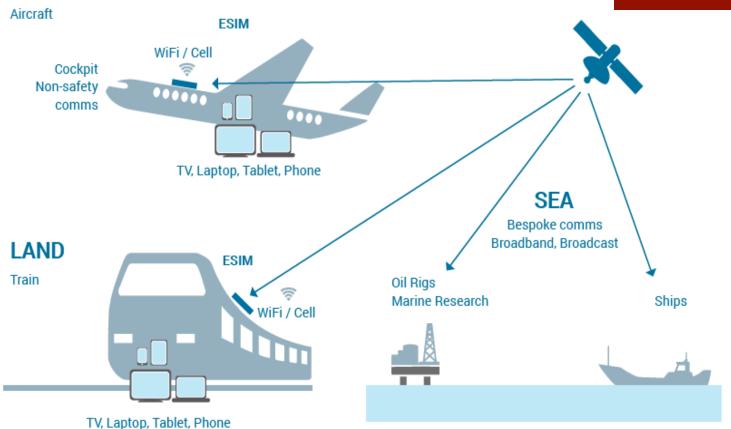


GSC Lunchtime Sessions APT WRC-19 Agenda Items: 1.5, 1.13, 10



www.gscoalition.org

AIR

GSC Position Agenda Item 1.5 ESIMs

Optimizing the Use of Existing Satellite Spectrum to meet growing demand for new satellite services

AI 1.5 ESIMs in the FSS Ka-band

Resolution 156 adopted at WRC-15 Recognizes the need for global broadband mobilesatellite communications

ESIMs communicating with FSS space stations

Al 1.5 (Resolution 158) Regulated operation of ESIMs to meet increasing demand for mobility applications

GSC Position:

Establish provisions for aeronautical, maritime, land ESIM operations within GSO FSS networks at 17.7-19.7 GHz & 27.5-29.5 GHz, with technical & regulatory protection mechanisms for the FSS, FS, MSS & EESS operations

AI 1.5: ESIMs in the FSS Ka-Band

Demand for satellite mobility applications

Aeronautical Market:

- 100+ commercial airlines offer IFC = a \$40B opportunity for airlines by 2035
- 8200+ commercial aircraft connected
- Connecting passengers. Reducing fuel consumption & delays. Improving route planning.

Maritime Market:

- 20 000 VSAT enabled vessels (75000 by 2028)
- Drivers: crew & passenger connectivity, more sensors/applications for operational vessel monitoring, route planning & vessel tracking, autonomous vessels.

AI 1.5 ESIMs in the FSS Ka-band

- Proposals from regional groups: CITEL (doc 11); RCC (doc 12); CEPT (doc 16); APT (doc 24); ATU (doc 46); ASMG (doc 29) + various multi-country and individual country proposals
- Common elements:
 - ⇒ General support for new Resolution to address ESIM in 17.7-19.7 GHz & 27.5-29.5 GHz
 - ⇒ Operation of ESIM within envelope of GSO FSS network characteristics & verification of compliance with envelope by BR (based on CR/C or notified network data)
 - ⇒ 70km off-shore distance for maritime ESIM in which prior agreement from coastal state is needed to operate
 - ⇒ Sharing between GSO ESIMs & non-GSO FSS or non-GSO MSS feeder links to be based on existing coordination procedures

Some elements still need to be resolved

AI 1.5 - ESIMs Elements to be resolved, 1

1/ Technical requirements for A-ESIM (pfd limit values, possible altitude limit)

- GSC supports "Option 1" pfd limits (based on results of sharing studies with terrestrial services, including 5G)
- Altitude limit is <u>not</u> necessary, provided Option 1 pfd limits are adopted & notifying administrations provide a commitment of compliance.
- GSC has major concerns with feasibility for BR to run compliance check with pfd limit.
 Compliance should be a condition of ESIM authorization.

2/ Reference bandwidth for ESIM EIRP limits (1 MHz reference bandwidth or 14 MHz reference bandwidth)

 GSC supports 14 MHz reference bandwidth: smallest bandwidth for terrestrial service receivers. Hence the EIRP limit towards the horizon for M-ESIM is 24.44 dB(W/14 MHz). A-ESIM pfd limit should be expressed in 14 MHz reference bandwidth to avoid unnecessarily restrictive limits on A-ESIM operation.

AI 1.5 - ESIMs Elements to be resolved, 2

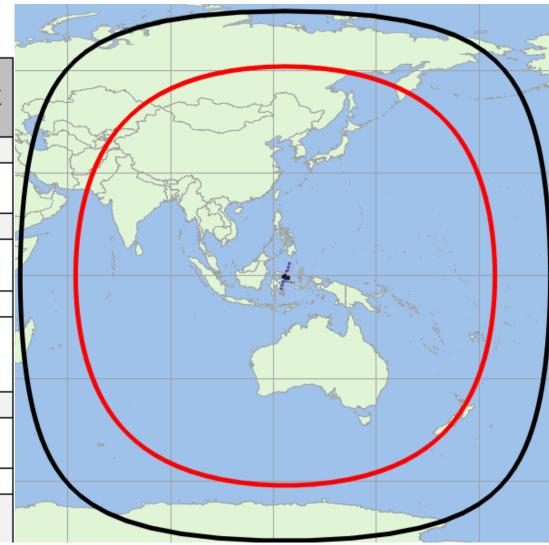
3/ Conditions for sharing with non-GSO FSS and non-GSO MSS feeder links

 GSC supports inclusion ESIM power limits only in 27.5-28.6 GHz, coordination under 9.11A in 28.6-29.5 GHz

4/ Annex 3 guidelines (possible inclusion of guidelines to the Resolution)

Annex 3 is unnecessary: ideas already clearly defined in main body of Resolution.

5/ Status of the protection limits for terrestrial services (Annex 2 of the Resolution)


- Maritime & aeronautical ESIMs meet pfd limits/minimum off-shore distance, to avoid unacceptable interference to the terrestrial services operating in accordance with the Radio Regulations within line-of-sight and on a co-frequency basis
- Compliance with these limits should be a necessary <u>and</u> sufficient condition for ESIM to meet its requirements with respect to terrestrial services

STUDY ASSUMPTIONS: AI 1.13 in 26 GHz vs ESIM in 28 GHz

AI 1.5 ESIMs in the FSS Ka-band

20 degree elevation limitation (red)

AI 1.1 26 GHz STU MS INTERFERNE	AI 1.5 OPTION 2 PFD MASK ESIM (FSS) INTO MS					
Methodology						
Type of interference	Statistical (Monte Carlo)	Worst-case				
evaluation method	ITU-R M.2101	(deterministic)				
Technical and operational characteristics						
Network loading factor	20%	ESIM duty cycle not				
TDD activity factor	BS:80%, UE:20%	considered				
UE body loss	4 dB	Not considered				
Antenna pointing	BS antenna beam not	BS antenna beam pointed				
	pointed toward the	towards horizon				
	horizon					
Propagation model						
Clutter loss	ITU-R P.2108	0 dB clutter loss				
	(up to 20-30 dB)					
Polarisation loss	3 dB	0 dB				
TOTAL INTERFERENCE	>20 dB	>20 dB APPLICABLE, BUT				
REDUCTION CONSIDERED		NOT CONSIDERED				

GSC Position Agenda Item 1.13 - IMT

Identification of frequency bands, among candidate bands listed in Resolution 238, for future development of IMT ... while preserving access to satellite spectrum for existing & future users

Frequency band(s)	Band(s) CPM Report			
24.25-27.5 GHz	А			
31.8-33.4 GHz	В			
37-40.5 GHz	С			
40.5-43.5 GHz	D & E			
45.5-47.2 GHz	F & G			
47.2-50.2 GHz & 50.4-52.6 GHz	H & I			
66-71 GHz	J			
71-76 GHz & 81-86 GHz	K & L			
Total: 33.25 GHz				

- A huge amount of spectrum has been studied
- More than enough to find 'more spectrum' for IMT
- New identifications should only be made against certain key principles

GSC Principles

- Consider ONLY bands of Res. 238 (WRC-15)
- Harmonisation of spectrum is key

 IMT identification with reasonable sharing conditions between IMT & satellite services

The GSC recommends IMT identifications at WRC-19 stay within:

- ◆ **26 GHz:** 24.25-27.5 GHz globally (3.25 GHz)
- ◆ **40 GHz:** 37-40 GHz in Region 2 and 40.5-43.5 GHz in Regions 1 and 3 (3 GHz)

◆ 66 GHz: 66-71 GHz globally (5 GHz)

- ⇒ with reasonable sharing conditions & measures to ensure co-existence between IMT & satellite services:
 - Power / pointing conditions on IMT base stations to protect FSS receivers, with no undue constraints on IMT
 - Assistance to administrations in defining measures for future FSS earth station deployment

<u>11.25 GHz</u> above 24 GHz for IMT in each ITU-R Region

Proposed power and pointing conditions for IMT base stations do not put undue constraints on IMT

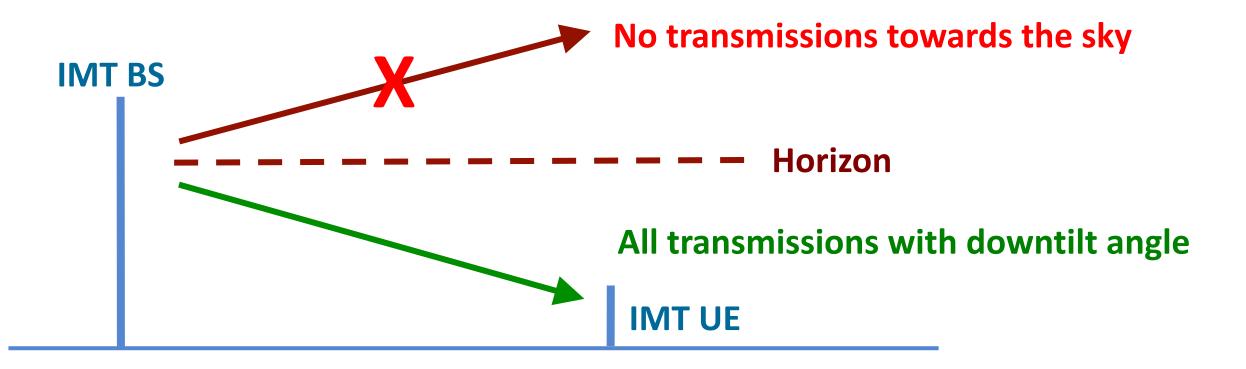
Max power level provided by IMT, TRP limit proposed and RR 21.5

IMT base station TRP levels (dBm/200 MHz)

TRP limit proposed = from RR 21.5

Max power level provided by IMT for ITU studies

37 dBm/200 MHz (= assumption + margin)


+ 12 dB margin from ITU studies

25 dBm/200 MHz (= assumption provided by IMT for ITU studies)

Proposed power + pointing conditions for IMT base stations do not put undue constraints on IMT

IMT base stations all transmit below horizon, with a downtilt angle

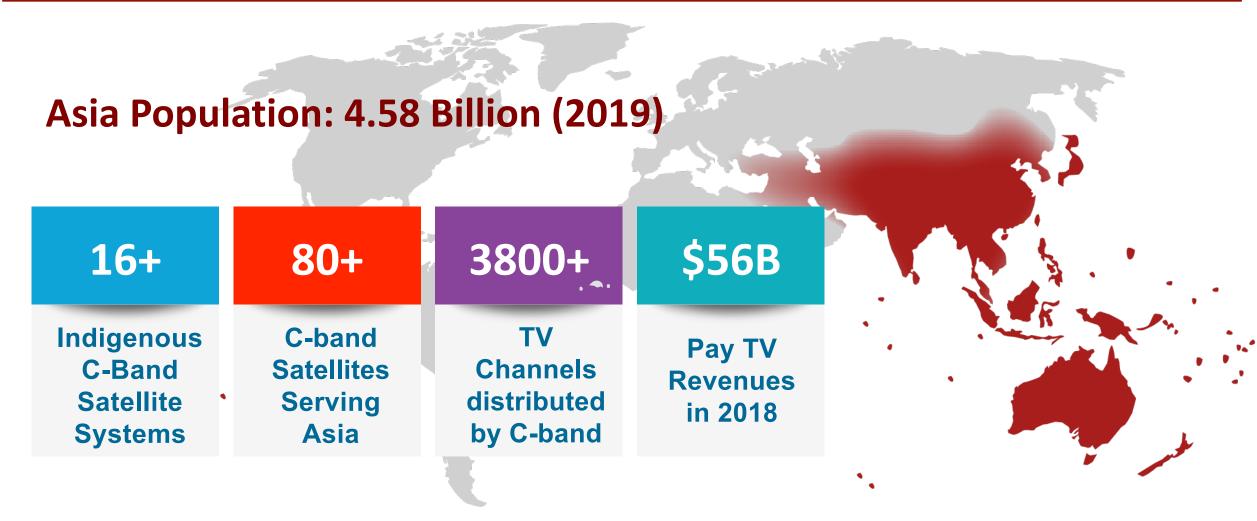
	37-39.5 GHz	39.5-40 GHz	40-40.5 GHz	40.5-42 GHz	42-43.5 GHz
Region 1		HDFSS			
Region 2				HDFSS	
Region 3			HDFSS		
	37-39.5 GHz	39.5-40 GHz	40-40.5 GHz	40.5-42 GHz	42-43.5 GHz
Region 1	37-39.5 GHz No Chai		40-40.5 GHz	40.5-42 GHz	
Region 1 Region 2			40-40.5 GHz		

- ⇒ Bands should not be identified for IMT in a Region where it is not intended for use by IMT
- ⇒ Global economies of scale for IMT equipment can be achieved through <u>identification of 3</u> <u>GHz of spectrum</u> for IMT in each ITU Region
- ⇒ There is no need for a global 6 GHz wide band for IMT

Handsets used today are can already support multiple frequency bands AND can accommodate regional band differences

Summary of Methods and Options (CPM text) supported by GSC for Al1.13

Band	IMT-2020	CPM Report
24.25-27.5 GHz (Band A)	Yes	 Method A2 (Alternative 1 or 2), subject to: Condition A2d Option 1 Condition A2e Option 3 (with 37 dBm/200 MHz) Condition A2g Option 3 or 4 Draft New Resolution [A113-IMT 26 GHZ] (WRC-19)
31.8-33.4 GHz (Band B)	No	Method B1 (No Change)
37.0-40.5 GHz (Band C)	Yes in Region 2 except in 40-40.5 GHz No in Regions 1 and 3	 In Region 1: Method C1 (NOC). In Region 2, Method C2, Conditions C2b Option 1 for the band 37-40 GHz and C1 (NOC) for the band 40-40.5 GHz. In Region 3: Method C1 (NOC). Draft New Resolution [B113-IMT 40/50GHZ] (WRC-19)
40.5-42.5 GHz (Band D)	Yes in Regions 1 and 3 No in Region 2	 In Region 1: Method D2, Conditions D2a Option 1. In Region 2: Method D1 (NOC), In Region 3: Method D2, Conditions D2a Option 1. Draft New Resolution [B113-IMT 40/50GHZ] (WRC-19)
42.5-43.5 GHz (Band E)	Yes in Regions 1 and 3 No in Region 2	 In Region 1: Method E2, with conditions below: In Region 2: Method E1 (NOC), In Region 3: Method E2, with conditions below: Condition E2a Option 2 (with 37 dBm/200 MHz) Condition E2c Option 3 or 4 Condition E2d Option 1 Draft New Resolution [B113-IMT 40/50GHZ] (WRC-19)
45.5-47.2 GHz (Bands F and G)	No	Method F1 and G1 (No Change)
47.2-50.2 GHz (Band H)	No	Method H1 (No Change)
50.4-52.6 GHz (Band I)	No	Method I1 (No Change)
66-71 GHz (Band J)	Yes	Method J2 (either alternative 1 or 2) with the conditions of Draft New Resolution [C113-IMT 66/71GHZ-J2] (WRC-19)
71-76 GHz (Band K)	Yes	Method K2 (either alternative 1 or 2) with the conditions of Draft New Resolution [E113-IMT 70/80GHZ] (WRC-19)
81-86 GHz (Band L)	Yes	Method L2 (either alternative 1 or 2) with the conditions of Draft New Resolution [E113-IMT 70/80GHZ] (WRC-19)


GSC Position Agenda Item 10 (C-Band)

Crucial Issue

Can IMT replace the services that will be displaced?
 Do alternatives exist to provide these services?

C-band facts & figures for Asia

There is no substitute for C-band Satellite Services in Asia

Critical telecom sectors rely on FSS C-band

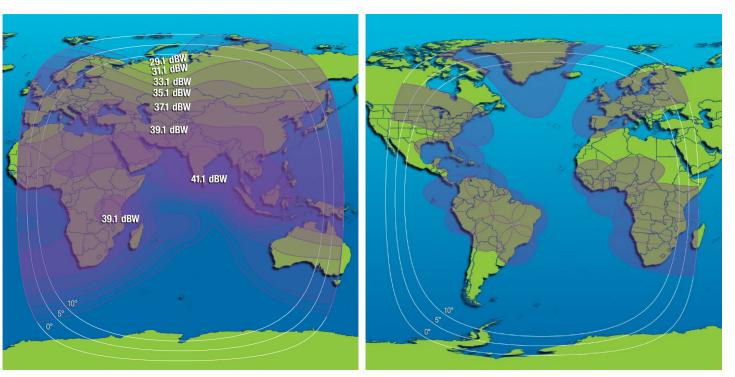
Mobile Backhaul: the only way to bring mobile telephony to remote areas

Broadcasting: the only robust way to bring TV/ next generation video to the whole territory

Oil & Gas: the most reliable way to connect exploration sites & offshore platforms

Humanitarian Programs: C-band recognized as a standard by UN for emergency comms

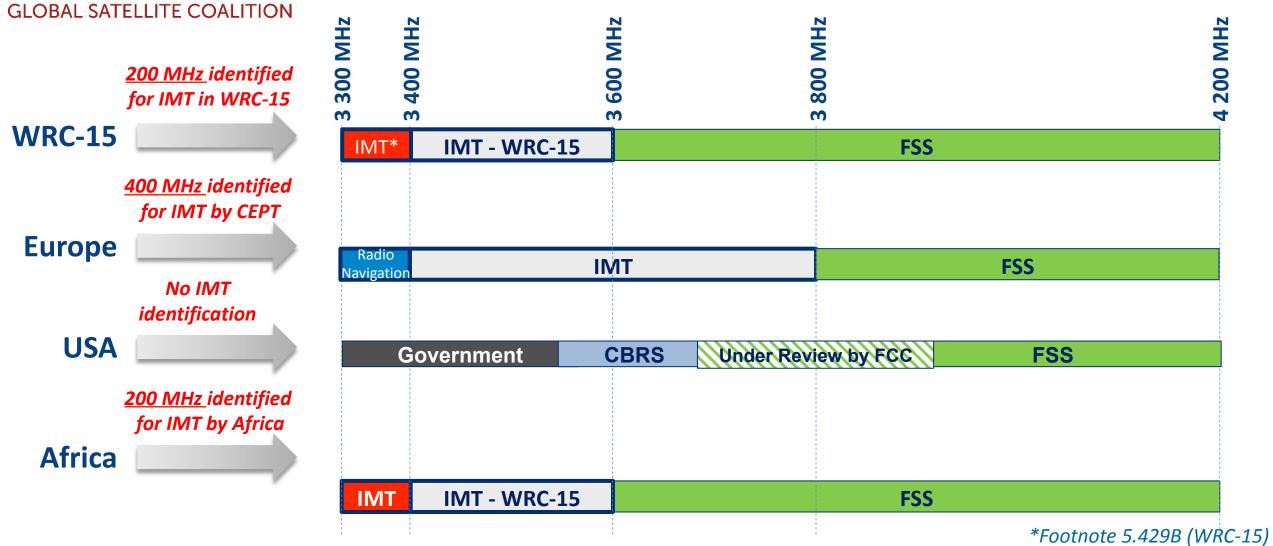
Air Navigation & Meteorology Services: the only solution for high reliability & wide coverage



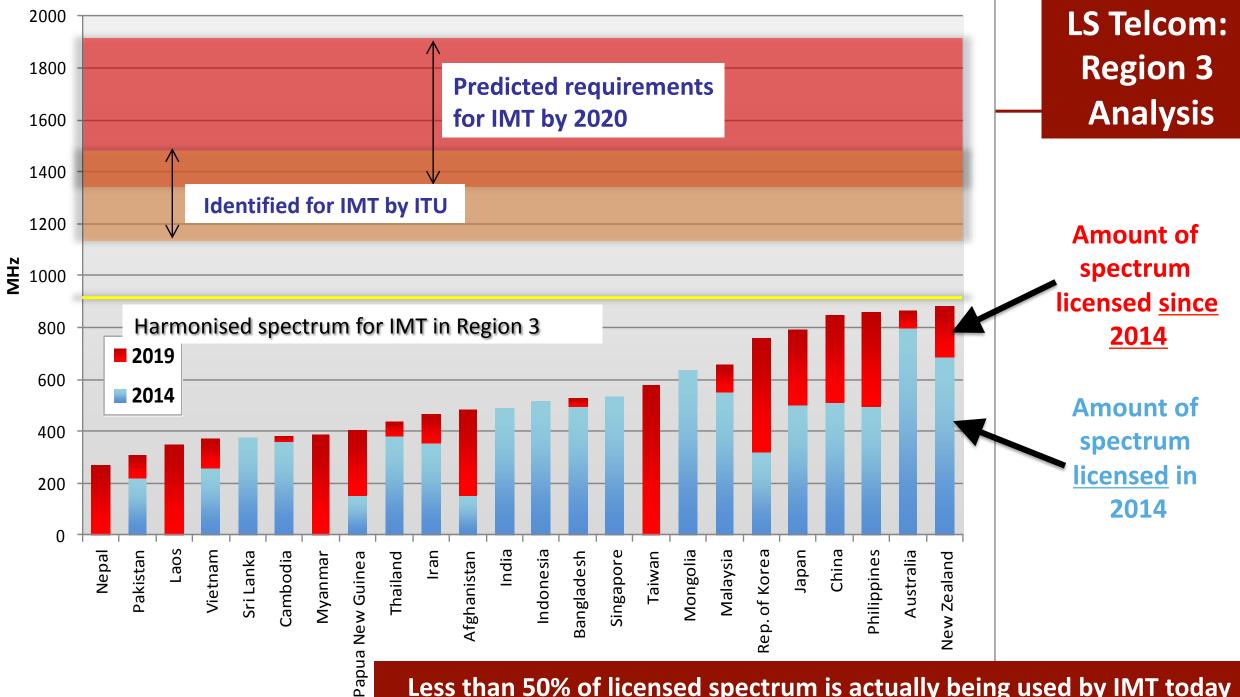
Maritime: the only solution for vessels in remote regions/long routes

Why C-Band remains the distribution platform of choice

The most efficient, reliable, & economical medium for Media distribution


Intelsat 20 at 68.5° E (Traditional wide beams)

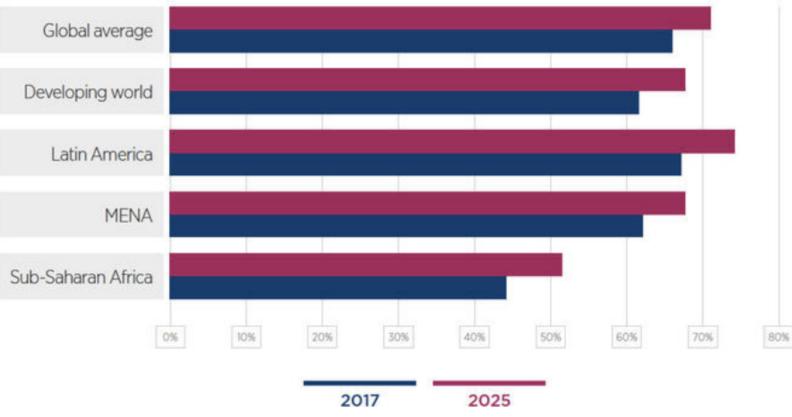
Intelsat 35e at 34.5° W (Channelized multi-spot beams)


- REACH: C-band beams cover large geographic areas & facilitate intercontinental/global communications
- ECONOMICS: 100s of thousands of installed earth stations around the world; over a hundred satellites in orbit, global reach, distribution efficiency
- RESILIENCE: C-band has unique propagation & coverage characteristics that cannot be replicated in other frequency bands

C-band usage varies around the world

Every region has unique needs \implies One size does not fit all

Less than 50% of licensed spectrum is actually being used by IMT today



Coverage or Capacity?

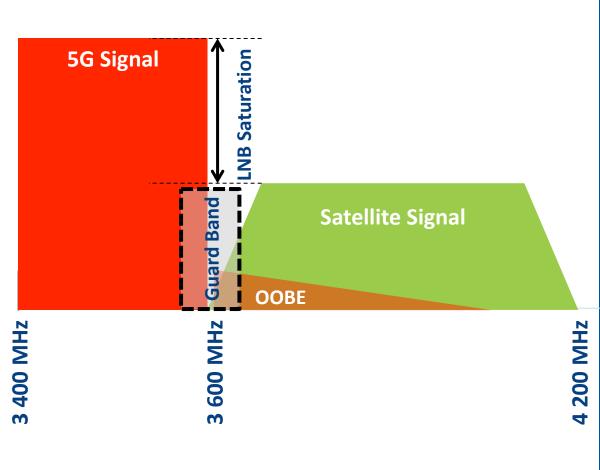
The Challenge in the Asia-Pacific Region is Coverage

- 50% of mobile networks are still using 2G
- By 2025, 3G will account for 60% of all mobile connections
- 400 million people have no access to mobile broadband
- C-band & mmWave are capacity bands (not coverage bands)
- Focus should be on digital dividend bands (700/800/900 MHz bands)

Subscriber Penetration:

Source: GSMA Intelligence – The Mobile Economy; Asia-Pacific 2018

FSS and mobile co-frequency sharing is not feasible


FSS operators & mobile operators agree that co-frequency sharing is not practical

- Numerous studies show that co-frequency sharing between 5G and FSS is not feasible
- Statements made by Ericsson & Nokia to the FCC confirmed that sharing was not feasible due to large exclusion zones around earth stations
- Even when 5G & FSS operate in adjacent bands, interference into FSS will occur, unless carefully managed
- 5G signals are far more powerful than satellite signals; this complicates coexistence between mobile & FSS

Co-existence between FSS and 5G in adjacent bands must be carefully managed

- Satellite earth stations are very sensitive to terrestrial interference
- ♦ 5G signals can interfere with FSS receive earth stations in two ways:
 - Saturate the LNB of the earth station, even if the 5G signal is adjacent to the satellite signal
 - Out-of-Band-Emissions (OOBE) and Spurious Emissions (SE) of the 5G signal can cause inband interference to FSS signals

 OOBE levels specified in 3GPP standards do not protect FSS signals in adjacent bands

Issue

- Can IMT replace the services that will be displaced?
- 33 GHz has just been studied, should even more spectrum for IMT really be studied?

The GSC is of the view that there is no need for any additional spectrum to be identified for IMT:

- WRC-19, under AI 1.13, is expected to identify **many GHz** of new spectrum for IMT
- ◆ Significant amount of unlicensed or unused spectrum is already identified for IMT
 - ⇒ Around the world, less than 50% of available spectrum is licensed
- 6-24 GHz range covers core bands for the satellite industry: C-, X, Ku- and Ka-band
 - ⇒ Many satellites operate in these bands => heavily used for applications e.g. broadcasting DTH, VSAT, SNG, broadband, security, etc.

Any identification of IMT in the 6-24 GHz range will:

- > Interfere with existing satellite services
- Negatively impact existing investments
- Harm competition by limiting the ability of satellite operators to meet the growing demands of satellite users, including government

GSC Position Agenda Item 9.1.7 - Unauthorized Earth Stations -

ISSUE

To address concerns raised with unauthorised earth stations while preserving regulatory certainty & flexibility

The GSC recognizes the concerns of administrations affected by unauthorized operation of earth stations terminals:

- Re Issue 2a (Annex to Resolution 958 WRC-15): GSC supports Option 1 <u>NO</u> <u>CHANGE</u> to Radio Regulations (international regulatory measures already addressed appropriately with Art 18)
- Additional <u>Regulatory Measures will not resolve this problem</u> of illegal transmissions
- Re Issue 2b (Annex to Resolution 958 WRC-15): GSC supports <u>ITU-R studies</u> <u>on best practices</u> in training & monitoring and development of ITU reports/ <u>handbooks/capacity building</u> to help administrations to prevent use of & locate unauthorized uplink earth terminals

Thank you!

www.gscoalition.o